Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.025
Filtrar
1.
J Transl Med ; 22(1): 434, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720370

RESUMEN

BACKGROUND: Cardiometabolic disorders pose significant health risks globally. Metabolic syndrome, characterized by a cluster of potentially reversible metabolic abnormalities, is a known risk factor for these disorders. Early detection and intervention for individuals with metabolic abnormalities can help mitigate the risk of developing more serious cardiometabolic conditions. This study aimed to develop an image-derived phenotype (IDP) for metabolic abnormality from unenhanced abdominal computed tomography (CT) scans using deep learning. We used this IDP to classify individuals with metabolic syndrome and predict future occurrence of cardiometabolic disorders. METHODS: A multi-stage deep learning approach was used to extract the IDP from the liver region of unenhanced abdominal CT scans. In a cohort of over 2,000 individuals the IDP was used to classify individuals with metabolic syndrome. In a subset of over 1,300 individuals, the IDP was used to predict future occurrence of hypertension, type II diabetes, and fatty liver disease. RESULTS: For metabolic syndrome (MetS) classification, we compared the performance of the proposed IDP to liver attenuation and visceral adipose tissue area (VAT). The proposed IDP showed the strongest performance (AUC 0.82) compared to attenuation (AUC 0.70) and VAT (AUC 0.80). For disease prediction, we compared the performance of the IDP to baseline MetS diagnosis. The models including the IDP outperformed MetS for type II diabetes (AUCs 0.91 and 0.90) and fatty liver disease (AUCs 0.67 and 0.62) prediction and performed comparably for hypertension prediction (AUCs of 0.77). CONCLUSIONS: This study demonstrated the superior performance of a deep learning IDP compared to traditional radiomic features to classify individuals with metabolic syndrome. Additionally, the IDP outperformed the clinical definition of metabolic syndrome in predicting future morbidities. Our findings underscore the utility of data-driven imaging phenotypes as valuable tools in the assessment and management of metabolic syndrome and cardiometabolic disorders.


Asunto(s)
Aprendizaje Profundo , Síndrome Metabólico , Fenotipo , Humanos , Síndrome Metabólico/diagnóstico por imagen , Síndrome Metabólico/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X , Enfermedades Cardiovasculares/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos
2.
Death Stud ; : 1-12, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713539

RESUMEN

This study examined beliefs about grief and bereavement, and how the endorsement of myths is related to death anxiety and complicated grief. Results from a sample of college students in the United States (N = 391) suggested that myths about grief and bereavement are prevalent in this group. Additionally, the endorsement of certain myths significantly explained both death anxiety and complicated grief. Findings from this study provide additional support for death education in college and university settings to promote grief literacy. Implications for education, advocacy, research, and practice are discussed.

3.
Nat Commun ; 15(1): 3836, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714691

RESUMEN

Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.


Asunto(s)
Receptores de Activinas Tipo I , Epigénesis Genética , Hipocampo , Memoria a Largo Plazo , Condicionamiento Físico Animal , Animales , Memoria a Largo Plazo/fisiología , Ratones , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Humanos , Condicionamiento Físico Animal/fisiología , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Femenino , Envejecimiento/genética , Envejecimiento/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38744934

RESUMEN

BACKGROUND: Generative Pretrained Model (GPT) chatbots have gained popularity since the public release of ChatGPT. Studies have evaluated the ability of different GPT models to provide information about medical conditions. To date, no study has assessed the quality of ChatGPT outputs to prostate cancer related questions from both the physician and public perspective while optimizing outputs for patient consumption. METHODS: Nine prostate cancer-related questions, identified through Google Trends (Global), were categorized into diagnosis, treatment, and postoperative follow-up. These questions were processed using ChatGPT 3.5, and the responses were recorded. Subsequently, these responses were re-inputted into ChatGPT to create simplified summaries understandable at a sixth-grade level. Readability of both the original ChatGPT responses and the layperson summaries was evaluated using validated readability tools. A survey was conducted among urology providers (urologists and urologists in training) to rate the original ChatGPT responses for accuracy, completeness, and clarity using a 5-point Likert scale. Furthermore, two independent reviewers evaluated the layperson summaries on correctness trifecta: accuracy, completeness, and decision-making sufficiency. Public assessment of the simplified summaries' clarity and understandability was carried out through Amazon Mechanical Turk (MTurk). Participants rated the clarity and demonstrated their understanding through a multiple-choice question. RESULTS: GPT-generated output was deemed correct by 71.7% to 94.3% of raters (36 urologists, 17 urology residents) across 9 scenarios. GPT-generated simplified layperson summaries of this output was rated as accurate in 8 of 9 (88.9%) scenarios and sufficient for a patient to make a decision in 8 of 9 (88.9%) scenarios. Mean readability of layperson summaries was higher than original GPT outputs ([original ChatGPT v. simplified ChatGPT, mean (SD), p-value] Flesch Reading Ease: 36.5(9.1) v. 70.2(11.2), <0.0001; Gunning Fog: 15.8(1.7) v. 9.5(2.0), p < 0.0001; Flesch Grade Level: 12.8(1.2) v. 7.4(1.7), p < 0.0001; Coleman Liau: 13.7(2.1) v. 8.6(2.4), 0.0002; Smog index: 11.8(1.2) v. 6.7(1.8), <0.0001; Automated Readability Index: 13.1(1.4) v. 7.5(2.1), p < 0.0001). MTurk workers (n = 514) rated the layperson summaries as correct (89.5-95.7%) and correctly understood the content (63.0-87.4%). CONCLUSION: GPT shows promise for correct patient education for prostate cancer-related contents, but the technology is not designed for delivering patients information. Prompting the model to respond with accuracy, completeness, clarity and readability may enhance its utility when used for GPT-powered medical chatbots.

5.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712051

RESUMEN

Measurements of neural responses to identically repeated experimental events often exhibit large amounts of variability. This noise is distinct from signal , operationally defined as the average expected response across repeated trials for each given event. Accurately distinguishing signal from noise is important, as each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and it is important not to confuse one for the other. Here, we introduce a principled modeling approach in which response measurements are explicitly modeled as the sum of samples from multivariate signal and noise distributions. In our proposed method-termed Generative Modeling of Signal and Noise (GSN)-the signal distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution. We validate GSN using ground-truth simulations and demonstrate the application of GSN to empirical fMRI data. In doing so, we illustrate a simple consequence of GSN: by disentangling signal and noise components in neural responses, GSN denoises principal components analysis and improves estimates of dimensionality. We end by discussing other situations that may benefit from GSN's characterization of signal and noise, such as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is provided with both MATLAB and Python implementations.

6.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38697044

RESUMEN

Objective.The aim of this work was to develop a Phase I control chart framework for the recently proposed multivariate risk-adjusted Hotelling'sT2chart. Although this control chart alone can identify most patients receiving extreme organ-at-risk (OAR) dose, it is restricted by underlying distributional assumptions, making it sensitive to extreme observations in the sample, as is typically found in radiotherapy plan quality data such as dose-volume histogram (DVH) points. This can lead to slightly poor-quality plans that should have been identified as out-of-control (OC) to be signaled in-control (IC).Approach. We develop a robust iterative control chart framework to identify all OC patients with abnormally high OAR dose and improve them via re-optimization to achieve an IC sample prior to establishing the Phase I control chart, which can be used to monitor future treatment plans.Main Results. Eighty head-and-neck patients were used in this study. After the first iteration, P14, P67, and P68 were detected as OC for high brainstem dose, warranting re-optimization aimed to reduce brainstem dose without worsening other planning criteria. The DVH and control chart were updated after re-optimization. On the second iteration, P14, P67, and P68 were IC, but P40 was identified as OC. After re-optimizing P40's plan and updating the DVH and control chart, P40 was IC, but P14* (P14's re-optimized plan) and P62 were flagged as OC. P14* could not be re-optimized without worsening target coverage, so only P62 was re-optimized. Ultimately, a fully IC sample was achieved. Multiple iterations were needed to identify and improve all OC patients, and to establish a more robust control limit to monitor future treatment plans.Significance. The iterative procedure resulted in a fully IC sample of patients. With this sample, a more robust Phase I control chart that can monitor OAR doses of new plans was established.


Asunto(s)
Órganos en Riesgo , Control de Calidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Algoritmos
7.
Nano Lett ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598417

RESUMEN

Two camps have emerged for targeting nanoparticles to specific organs and cell types: affinity moiety targeting and physicochemical tropism. Here we directly compare and combine both using intravenous (IV) lipid nanoparticles (LNPs) designed to target the lungs. We utilized PECAM antibodies as affinity moieties and cationic lipids for physicochemical tropism. These methods yield nearly identical lung uptake, but aPECAM LNPs show higher endothelial specificity. LNPs combining these targeting methods had >2-fold higher lung uptake than either method alone and markedly enhanced epithelial uptake. To determine if lung uptake is because the lungs are the first organ downstream of IV injection, we compared IV vs intra-arterial (IA) injection into the carotid artery, finding that IA combined-targeting LNPs achieve 35% of the injected dose per gram (%ID/g) in the first-pass organ, the brain, among the highest reported. Thus, combining the affinity moiety and physicochemical strategies provides benefits that neither targeting method achieves alone.

8.
Langmuir ; 40(16): 8365-8372, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38600821

RESUMEN

In recent decades, nucleic acid self-assemblies have emerged as popular nanomaterials due to their programmable and robust assembly, prescribed geometry, and versatile functionality. However, it remains a challenge to purify large quantities of DNA nanostructures or DNA-templated nanocomplexes for various applications. Commonly used purification methods are either limited by a small scale or incompatible with functionalized structures. To address this unmet need, we present a robust and scalable method of purifying DNA nanostructures by Sepharose resin-based size exclusion. The resin column can be manually packed in-house with reusability. The separation is driven by a low-pressure gravity flow in which large DNA nanostructures are eluted first followed by smaller impurities of ssDNA and proteins. We demonstrated the efficiency of the method for purifying DNA origami assemblies and protein-immobilized DNA nanostructures. Compared to routine agarose gel electrophoresis that yields 1 µg or less of purified products, this method can purify ∼100-1000 µg of DNA nanostructures in less than 30 min, with the overall collection yield of 50-70% of crude preparation mixture. The purified nanocomplexes showed more precise activity in evaluating enzyme functions and antibody-triggered activation of complement protein reactions.

9.
BMJ Open ; 14(4): e082274, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684246

RESUMEN

INTRODUCTION: A greater extent of resection of the contrast-enhancing (CE) tumour part has been associated with improved outcomes in glioblastoma. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in high-grade glioma (HGG) patients in terms of survival, functional, neurological, cognitive and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. METHODS AND ANALYSIS: This study is an international, multicentre, prospective, two-arm cohort study of observational nature. Consecutive glioblastoma patients will be operated with SMR or maximal resection at a 1:1 ratio. Primary endpoints are (1) overall survival and (2) proportion of patients with National Institute of Health Stroke Scale deterioration at 6 weeks, 3 months and 6 months postoperatively. Secondary endpoints are (1) residual CE and NCE tumour volume on postoperative T1-contrast and FLAIR (Fluid-attenuated inversion recovery) MRI scans; (2) progression-free survival; (3) receipt of adjuvant therapy with chemotherapy and radiotherapy; and (4) quality of life at 6 weeks, 3 months and 6 months postoperatively. The total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. ETHICS AND DISSEMINATION: The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Calidad de Vida , Humanos , Neoplasias Encefálicas/cirugía , Glioblastoma/cirugía , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto , Procedimientos Neuroquirúrgicos/métodos , Estudios Prospectivos
10.
Europace ; 26(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38584468

RESUMEN

AIMS: Pulsed field ablation (PFA) has significant advantages over conventional thermal ablation of atrial fibrillation (AF). This first-in-human, single-arm trial to treat paroxysmal AF (PAF) assessed the efficiency, safety, pulmonary vein isolation (PVI) durability and one-year clinical effectiveness of an 8 Fr, large-lattice, conformable single-shot PFA catheter together with a dedicated electroanatomical mapping system. METHODS AND RESULTS: After rendering the PV anatomy, the PFA catheter delivered monopolar, biphasic pulse trains (5-6 s per application; ∼4 applications per PV). Three waveforms were tested: PULSE1, PULSE2, and PULSE3. Follow-up included ECGs, Holters at 6 and 12 months, and symptomatic and scheduled transtelephonic monitoring. The primary and secondary efficacy endpoints were acute PVI and post-blanking atrial arrhythmia recurrence, respectively. Invasive remapping was conducted ∼75 days post-ablation. At three centres, PVI was performed by five operators in 85 patients using PULSE1 (n = 30), PULSE2 (n = 20), and PULSE3 (n = 35). Acute PVI was achieved in 100% of PVs using 3.9 ± 1.4 PFA applications per PV. Overall procedure, transpired ablation, PFA catheter dwell and fluoroscopy times were 56.5 ± 21.6, 10.0 ± 6.0, 19.1 ± 9.3, and 5.7 ± 3.9 min, respectively. No pre-defined primary safety events occurred. Upon remapping, PVI durability was 90% and 99% on a per-vein basis for the total and PULSE3 cohort, respectively. The Kaplan-Meier estimate of one-year freedom from atrial arrhythmias was 81.8% (95% CI 70.2-89.2%) for the total, and 100% (95% CI 80.6-100%) for the PULSE3 cohort. CONCLUSION: Pulmonary vein isolation (PVI) utilizing a conformable single-shot PFA catheter to treat PAF was efficient, safe, and effective, with durable lesions demonstrated upon remapping.


Asunto(s)
Fibrilación Atrial , Catéteres Cardíacos , Ablación por Catéter , Venas Pulmonares , Recurrencia , Humanos , Venas Pulmonares/cirugía , Fibrilación Atrial/cirugía , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/diagnóstico , Ablación por Catéter/métodos , Ablación por Catéter/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Diseño de Equipo , Técnicas Electrofisiológicas Cardíacas , Factores de Tiempo , Frecuencia Cardíaca , Potenciales de Acción
11.
J Surg Res ; 298: 364-370, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38669782

RESUMEN

INTRODUCTION: Physicians have gravitated toward larger group practice arrangements in recent years. However, consolidation trends in colorectal surgery have yet to be well described. Our objective was to assess current trends in practice consolidation within colorectal surgery and evaluate underlying demographic trends including age, gender, and geography. METHODS: We performed a retrospective cross-sectional study using the Center for Medicare Services National Downloadable File from 2015 to 2022. Colorectal surgeons were categorized by practice size and by region, gender, and age. RESULTS: From 2015 to 2022, the number of colorectal surgeons in the United States increased from 1369 to 1621 (+18.4%), while the practices with which they were affiliated remained relatively stable (693-721, +4.0%). The proportion of colorectal surgeons in groups of 1-2 members fell from 18.9% to 10.7%. Conversely, those in groups of 500+ members grew from 26.5% to 45.2% (linear trend P < 0.001). The midwest region demonstrated the highest degree of consolidation. Affiliations with group practices of 500+ members saw large increases from both female and male surgeons (+148.9% and +86.9%, respectively). New surgeons joining the field since 2015 overwhelmingly practice in larger groups (5.3% in groups of 1-2, 50.1% in groups of 500+). CONCLUSIONS: Colorectal surgeons are shifting toward larger practice affiliations. Although this change is happening across all demographic groups, it appears unevenly distributed across geography, gender, and age. New surgeons are preferentially joining large group practices.

13.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659905

RESUMEN

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

14.
Curr Neurol Neurosci Rep ; 24(5): 123-139, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578405

RESUMEN

PURPOSE OF REVIEW: Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS: We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Barrera Hematoencefálica/patología , Glioblastoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Microambiente Tumoral
16.
Blood ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579288

RESUMEN

Multiple myeloma is a plasma cell malignancy that is currently incurable with conventional therapies. Following the success of CD19-targeted chimeric antigen receptor (CAR) T-cells in leukemia and lymphoma, CAR T-cells targeting B-cell maturation antigen (BCMA) more recently demonstrated impressive activity in relapsed and refractory myeloma patients. However, BCMA-directed therapy can fail due to low expression of BCMA on myeloma cells, suggesting that novel approaches to better address antigen-low disease may improve patient outcomes. We hypothesized that engineered secretion of the pro-inflammatory cytokine interleukin-18 (IL-18) and multi-antigen targeting could improve CAR T-cell activity against BCMA-low myeloma. In a syngeneic murine model of myeloma, CAR T-cells targeting the myeloma-associated antigens BCMA and B-cell activating factor (BAFF-R) failed to eliminate myeloma when these antigens were weakly expressed, whereas IL-18-secreting CAR T-cells targeting these antigens promoted myeloma clearance. IL-18-secreting CAR T-cells developed an effector-like T-cell phenotype, promoted interferon-gamma production, reprogrammed the myeloma bone marrow microenvironment through type I/II interferon signaling, and activated macrophages to mediate anti-myeloma activity. Simultaneous targeting of weakly expressed BCMA and BAFF-R with dual-CAR T-cells enhanced T-cell:target cell avidity, increased overall CAR signal strength, and stimulated anti-myeloma activity. Dual-antigen targeting augmented CAR T-cell secretion of engineered IL-18 and facilitated elimination of larger myeloma burdens in vivo. Our results demonstrate that combination of engineered IL-18 secretion and multi-antigen targeting can eliminate myeloma with weak antigen expression through distinct mechanisms.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38582252

RESUMEN

BACKGROUND: Online patient education materials exist to inform patient medical decisions, yet the average adult in the United States reads at an eighth-grade level and 50% of Medicaid patients read at or below a fifth-grade level. To appropriately meet U.S. health literacy needs, the American Medical Association and National Institutes of Health recommend that patient education materials not exceed a sixth-grade level. The purpose of this study was to assess and compare the readability of English and Spanish online patient education materials pertaining to shoulder instability surgery. METHODS: Google searches of the terms "shoulder instability surgery" and "cirugía de inestabilidad de hombro'' were conducted to include 25 eligible OPEMs per language. English OPEM readability was calculated using Flesch-Kincaid Grade Level, Flesch Reading Ease, Flesch Reading Ease Grade Level, Gunning-Fog Index, Coleman-Liau Index, and Simple Measure of Gobbledygook. Spanish OPEM readability was assessed using Fernandez-Huerta Index (the Spanish equivalent of Flesch Reading Ease), Fernandez-Huerta Index Grade Level, Gutiérrez de Polini's Fórmula de comprensibilidad, and INFLESZ. RESULTS: Readability index analysis revealed that the mean Flesch Reading Ease of English online patient education materials was significantly lower than the mean Fernandez-Huerta Index of Spanish online patient education materials. English materials were also found to be written at a significantly higher grade level than Spanish materials. CONCLUSIONS: Shoulder instability surgery online patient education materials in both English and Spanish are written at higher reading levels than recommended by the AMA and NIH, though Spanish online patient education materials were more readable on average.

18.
Nat Chem ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632365

RESUMEN

Enantioconvergent reactions are pre-eminent in contemporary asymmetric synthesis as they convert both enantiomers of a racemic starting material into a single enantioenriched product, thus avoiding the maximum 50% yield associated with resolutions. All currently known enantioconvergent processes necessitate the loss or partial loss of the racemic substrate's stereochemical information, thus limiting the potential substrate scope to molecules that contain labile stereogenic units. Here we present an alternative approach to enantioconvergent reactions that can proceed with full retention of the racemic substrate's configuration. This uniquely stereo-economic approach is possible if the two enantiomers of a racemic starting material are joined together to form one enantiomer of a non-meso product. Experimental validation of this concept is presented using two distinct strategies: (1) a direct asymmetric coupling approach, and (2) a multicomponent approach, which exhibits statistical amplification of enantiopurity. Thus, the established dogma that enantioconvergent reactions require substrates that contain labile stereogenic units is shown to be incorrect.

19.
Langmuir ; 40(17): 8836-8842, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38634602

RESUMEN

Halide perovskite thin films can be the centerpiece of high-performance solar cells, light-emitting diodes, and other optoelectronic devices if the films are of high uniformity and relatively free of pinholes and other defects. A common strategy to form dense films from solution has been to generate a high density of nuclei by rapidly increasing supersaturation, for example, by timely application of an antisolvent or forced convection. In this work, we examine the role of retrograde solubility, wherein solubility decreases with increasing temperature, as a means of increasing the nucleation density and film coverage of slot-die-coated methylammonium lead iodide (MAPbI3) from γ-butyrolactone (GBL) solution. Coverage was investigated as a function of the substrate temperature and the presence and temperature of an air knife. Results were considered within the framework of the dimensionless modified Biot number, which quantifies the interplay between evaporation and horizontal diffusion. Moderate temperatures and a heated air knife improved film coverage and morphology by enhanced nucleation up to ∼80 °C. However, despite the dense nucleation enabled by retrograde solubility, slow evaporation as a result of the low vapor pressure of GBL, combined with Ostwald ripening at high temperatures, prevented the deposition of void-free, device-quality films. This work has provided a more detailed understanding of the interplay between perovskite processing, solvent parameters, and film morphology and ultimately indicates the obstacles to forming dense, uniform films from solvents with high boiling points even in the presence of rapid nucleation.

20.
Crit Care Med ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578158

RESUMEN

OBJECTIVES: Quantify the relationship between perioperative anaerobic lactate production, microcirculatory blood flow, and mitochondrial respiration in patients after cardiovascular surgery with cardiopulmonary bypass. DESIGN: Serial measurements of lactate-pyruvate ratio (LPR), microcirculatory blood flow, plasma tricarboxylic acid cycle cycle intermediates, and mitochondrial respiration were compared between patients with a normal peak lactate (≤ 2 mmol/L) and a high peak lactate (≥ 4 mmol/L) in the first 6 hours after surgery. Regression analysis was performed to quantify the relationship between clinically relevant hemodynamic variables, lactate, LPR, and microcirculatory blood flow. SETTING: This was a single-center, prospective observational study conducted in an academic cardiovascular ICU. PATIENTS: One hundred thirty-two patients undergoing elective cardiovascular surgery with cardiopulmonary bypass. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients with a high postoperative lactate were found to have a higher LPR compared with patients with a normal postoperative lactate (14.4 ± 2.5 vs. 11.7 ± 3.4; p = 0.005). Linear regression analysis found a significant, negative relationship between LPR and microcirculatory flow index (r = -0.225; ß = -0.037; p = 0.001 and proportion of perfused vessels: r = -0.17; ß = -0.468; p = 0.009). There was not a significant relationship between absolute plasma lactate and microcirculation variables. Last, mitochondrial complex I and complex II oxidative phosphorylation were reduced in patients with high postoperative lactate levels compared with patients with normal lactate (22.6 ± 6.2 vs. 14.5 ± 7.4 pmol O2/s/106 cells; p = 0.002). CONCLUSIONS: Increased anaerobic lactate production, estimated by LPR, has a negative relationship with microcirculatory blood flow after cardiovascular surgery. This relationship does not persist when measuring lactate alone. In addition, decreased mitochondrial respiration is associated with increased lactate after cardiovascular surgery. These findings suggest that high lactate levels after cardiovascular surgery, even in the setting of normal hemodynamics, are not simply a type B phenomenon as previously suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA